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Single-boson realizations of so@) and so(2,l) 

David M Fradkin 
Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202, USA 

Received 1 July 1993, in final form 12 Octobe; 1993 

Abstract. Realizations of the Lie algebras so(3) and so(2, 1) are developed which are 
functions of integer powers of creation and destruction operators for a'single boson, i.e. 
(a')" and (a)", as well as a function of the associated single-boson number operator 
N-n'a. Three types of realizations of the Lie algebra elements, together with the 
corresponding Casimir operators, are developed which depend on arbitrary m-periodic 
functions of N .  A generic form is achieved in terms of devised m-quanta operators. The 
boson representation space is infinite-dimensional but may contain as many as two 
imbedded invariant subspaces. A distinction is made between irreducible representations 
of a Lie algebra which lead to global group representations and those which lead only to 
local (non-integrable) group representations. It is shown that the two non-unitary types of 
representations developed are equivalent to the unitary one. Form= 1, specific choices 
for the m-periodic functions lead to realizations known in the literature. 

1. Introduction 

The use~of boson operators (i.e. harmonic oscillator creation and destruction opera- 
tors) to provide realizations of various Lie algebras now has quite an extensive 
history, and these realizations have found application in a number of physical systems. 
It is not the intention in this introduction to review in any detail this extensive history 
but just to touch on a few portions and provides references which serve as an entree to 
the wider literature. 

Undoubtedly, the first system for which such a realization was employed was that 
of the three-dimensional isotropic harmonic oscillator itself, since the position and 
momentum operators are directly expressed as linear combinations of the oscillator 
creation and destruction operators, and thus the angular momentum operators which 
provide a realization of the so(2) algebra become expressible as bilinear combinations 
of the oscillator operators. 

Operators for' a single boson, linear in one-dimensional harmonic oscillator 
creation and destruction operators but nonlinear in the associated number operator, 
were utilized by Holstein and Primakoff [l] to provide a unitary 4 2 )  realization in 
their study of ferromagnetism. In a celebrated paper, Schwinger [Z] utilized two boson 
pairs of operators, creation operators a;, q' and associated destruction operators a,, 
q, to devise a mapping (since called the Jordan-Schwinger mapping; see e.g. [3]) of 
the~Lie algebra so(3). For applications to ferromagnetism, Dyson [4] and Maleev [5] 
constucted non-unitary mappings for 4 2 )  that were linear in one-dimensional 
harmonic oscillator creation and destruction operators; subsequently it was shown [6] 
that this mapping could be unitarized to become the Holstein-F'rimakoff mapping. 
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There have been many applications of boson realizations of Lie algebras in regard to 
nuclear physics and an extensive review of such applications as well as the underlying 
group theoretical analysis has recently been given by Klein and Marshalek [6], who 
have provided an exhaustive bibliography (581 references!). In one of the nuclear 
applications, 3N boson operators are employed [7] to describe SU(N), with relevance 
to the classification of states of N particles moving in a common harmonic oscillator 
potential. 

The general group theoretical question of realizations of Lie algebras by means of 
boson operators has also been addressed over the years and continues to attract a fair 
amount of interest [S-111. In general, the focus has been upon realizations which 
involve many-boson creation and destruction operators, or realizations which are 
linear or bilinear in such operators (as well as a function of the number operator) for a 
single boson. 

In this paper, in the context of realizations of the Lie algebras so(3) and so(2, l), 
we shall develop realizations which are functions of integer powers of creation and 
destruction operators for a single boson, i.e. for a given m depending on (a')" and 
(a)", as well as the associated single-boson number operator. This shall be done by a 
very straightforward constructive procedure utilizing the Lie algebra commutation 
relations. The realizations obtained have a functional dependence on a number of 
arbitrary m-periodic functions of the single-boson number operator. It is shown that 
the corresponding C a s m r  operators associated with these realizations simply depend 
on one of the arbitrary m-periodic functions. In general, these realizations are infinite- 
dimensional, though for certain choices of the aforementioned m-periodic functions, 
they possess one or two imbedded finite-dimensional invariant subspaces. Whiie the 
realizations, for different m, may be useful for the purpose of imbedding additional 
algebras in a common subspace, the realizations for different m may be put into a 
single form by utilization of m-quanta operators bmt, b, and an associated m-quanta 
number operator. These m-quanta operators are constructed in terms of the single- 
boson operators. 

An analysis is given of the invariant subspaces and the associated irreducible 
representations obtained for the Lie algebras. A distinction is drawn between 
realizations of a Lie algebra, satisfying the requisite commutation relations, which 
may be related to a local representation (i.e. in the neighbourhood of the identity) but 
not a global representation of an associated Lie group, and a realization of a Lie 
algebra which may be related to a global representation. For realizations associated 
with such global group representations, generalizations of the Holstein-Primakoff [l] 
realization (the m = 1 case) are obtained. 

In this paper, three parallel constructive processes are used, one leading to an 
explicitly unitary realization for so(3), one providing constrained non-unitary realiza- 
tions, and one giving non-constrained non-unitary realizations. It is shown that for a 
given m the constrained non-unitary as well as the non-constrained non-unitary 
realizations are equivalent to that of the unitary one, generalizing the procedure by 
which the Dyson-Maleev [4,5] mapping becomes unitarized to give the 
Holstein-Primakoff mapping. 

2. Group algebra 

In the following, with the aid of single-boson operators U' and a, we shall construct 
infinite-dimensional realizations of the Lie algebra of the special orthogonal group 
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SO(3) which leaves invariant the bilinear quantity (x# + (x$+ (xJ3, as well as the 
Lie algebra of the non-compact group SO(2,l) which leaves invariant the bilinear 
quantity (xl)'+ (x$- (x3)'. As is well known (see e.g. [12]), the three elements of the 
associated Lie algebras, so@) and so(2, 1) respectively, obey the commutator algebra 

where 1 = + 1 for so(3) and 1 = - 1 for so(2,I). 
The operator that commutes with the three elements, namely the Casimir operator 

which characterizes the realization, is given (up to a multiplicative and additive 
constant) by the expression 

[L3, L,] = + L ,  [L,,  L-]  = U 3  

% = ~ L L ,  +aL3(L3 + 1). 
The Hermitian conjugate one-dimensional oscillator (Bose) creation and destruction 
operators U and ut satisfy the commutation relations 

so for the 'number' operator N d u ,  

For integer m a  1, an operator function f(N) of N satisfies the relationships 

[U, U ] = [ U t , Q ' ] = o  [U, Q'] = 1 

[N,  ut] =ut [N,  Q]= -U. 

(uf)"f ( N )  =f(N- m) (ut)" 

@)"f(N) =fN+ m) (4" 
which may easily be established by considering the matrix elements of these operator 
equations on the basis In) for which 

uti n)= m l n  + 1) NI n) = nl n} aln)= .\/;;In - l}. 
Furthermore, it follows that 

(N+m)! N !  
= and (u+)mu" = n! (N  - m) ! ' 

3. Realizations involving integer powers of Q' and U: Hermitian L,, L- connection 

Infinite-dimensional basis realizations of the so(3) and so(2, 1) Lie algebras, involving 
integer powers m in the Bose creation and destruction operators ut and U, may be 
constructed in a straightforward fashion. In this section, we identify the m-realization 
of the elements of the algebra(s) by the following scheme: 

where m is an integer 3 1 .  The association ascribed here to L+(m) and L ( m )  is such 
that they are Hermitian conjugates of one another, i.e. 

iffm(N) is a real function of N .  

L + + L + ( ~ ) = ( Q ' ) ' ' ~ ~ ( N )  L- +L-(m) =fm(N)(a)" L + L d m )  =gm(N) 

L-(m)* = L+(m) 

The functions gm(N) ,  and fm(N) are required to satisfy the commutator algebra 

[g" (a')"fm(N)I= +(Qt)"f" 
[ g m ( N ) , f m  (NI (a)"] = -fm(N) (4" 
[(a+)"fm(N)>fm(N) (a)"] = & m ( N ) .  
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with m being 1,2,3, . . . . This leads to the following conditions: 

{g, ( N )  - g d N  - m) - U= 0 

The general solution for gm(N) satisfying the first of these equations is 

1 
g,(N)=; (N-mTm(N)) 

where Tm(N) is any m-periodic function? of N ,  i.e. Tm(N) =Tm(N+ m). 

linearized by considering the quantity Ifm(N)]', which leads to the general solution 
To solve the second equation, the nonlinear difference equation for f m ( N )  is 

. 
Here, the operator %"(N) is an m-periodic function (possibly different than Tm(N)). 

The Casimir operator 42" for this m-realization may be evaluated by considering its 
(n'l In) matrix elements, which gives the result 

%m = a{ - + (,?7Lm(N))Z}. 

Thus, the characterization of the m-realization depends only on one of the m-periodic 
functions that occurs, namely am@". I t  may be easily verified that %,,,(N), any 
m-periodic function of N ,  satisfies the commutation relations 

[%"(N), (a')"f(N)I = [%",(N),f(N) (a)"] = %"" NI = 0. 
For a given m, the commutation of this Casimir operator with the elements of the 

Lie algebra does not imply that these realizations are irreducible. %,,,(N) is not 
necessarily a multiple of the (infinite-dimensional) unit matrix, which it would have to 
be by Schur's lemma if these representations were irreducible. Even if am(N) were 
chosen to be a constant, independent of N ,  so that in the infinite-dimensional In) 
boson basis it would be proportional to a unit matrix, this would still not imply 
irreducibility: only if it were known that the realization were irreducible would it then 
be necessary that the matrix representing a commuting operator must be a multiple of 
the unit matrix. 

It is observed that the operators L+(m), L ( m ) ,  and L,(m), which are functions of 
(a')", a" and N ,  only connect eigenstates of N whose eigenvalues are m apart. Thus, 
the results obtained for the Lie algebra operators may be cast in a form, using m- 
quanra creation, annihilation and number operators (defined in the following), which 
utilizes only those eigenstates actually connected by the Lie algebra operators. 

t Any m-periodic function, say Tm(N), may be represented by the Fourier series expansion 

T ~ ( N ) =  e"&"S,(k) 

where S,,,(k) are arbitrary coefficients. 
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3.1. M-realization of Lie algebras in terms of m-quanta boson operators 

Consider m-quanta states In,,,) which are eigenstates of the number operator N=Q'Q 
with eigenvalues which are m-quanta apart: 

In,) - lam) 
These m-quanta eigenstates can be considered as eigenstates of a constucted m-quanta 
number operator N ,  such that N,,, n,) = n,[ ad. The m-quantanumber operator itself 
may be written in terms of constructed m-quanta creation and annihilation operators 
bmt and b,,, by the usual prescription 

In, + 1) - 1  (n + 1)m) In, - 1)- [ (n - 1)m) etc. 

N, = b,'b, 

where the effect of b,,,' and b, on the eigenstates of N ,  is required to be 

b,,,'ln,) = (n,+ l)lnln, + 1) 

bm 1 8,) = (n,)"*[ e, - 1) 
so that 

[b,,,', b,,,] = 1. 

We construct the operators b,' and b, by assuming they have the form 

b,'= (a')"W,,,(N) b, = W,,, ( N )  (a)"'. 
Satisfaction of the commutation relations then leads to a solution for W,(N). The 
result is 

m (N+m-l)! 

so N ,  = Nlm. 

operators are 
The inverse relationships between the m-quanta operators and the single quantum 

and N = mNm. 
Note, m-periodic functions of N become 1-periodic functions of N,, i.e. 

T m  (NI = TI;(" 1 %(N)  =%("). 
In terms of the m-quanta operators, the m-realizations of the Lie algebras obtained in 
the previous section become simply 

L+(m)=(Q')"f,(N)=bm%(N,) 

L - 4 4  =fm(N)am =fi(Nm)bm 
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and 

L(m)=gm(N) =g,(Nm). 
The Casimir operator becomes simply 

%,=a{-++ (wN,))? 
so it is just a multiple of the unit matrix in terms of the basis of the eigenstates of N,. 

Thus, the m-realizations are just the same as the m =  1 realizations in which the 
m-quanta creation, destruction and number operatprs (b,,,', b,, N,) are used in place 
of the 1-quantum creation, destruction and number operators (at ,a ,N).  The matrix 
elements of the Lie algebras in terms ofthe bask ofeigenstates of N, are the same for 
different positive integer values of m. One could consider the basis of eigenstates of 
N, as an m-contracted basis of the eigenstates of N .  

The reason why it may be desirable to use the eigenstates of N as a basis rather 
than the m-contracted basis is that one may wish to embed the Lie algebras of so(3) or 
so(2,l) in a larger algebra whose additional elements have matrix elements between 
eigenstates of N associated with eigenvalues that are norm apart. Thus, utilization of 
the m-representation in terms of at, a, N ,  rather than b,?, b,, N,,provides theflexibiliry 
to attempt such imbedding. 

3.2. Nullspaces, invariant subspaces and finite irreducible representarions 

In terms of the m-quanta operators, the three elements of the m-realizations of the 
algebras are 

and 

L3(m) = N, - TI 
where, in terms of the eigenstate basis of N,, the quantities FI(Nm) and RI@,,,) are 
simply numbers TI and ?RI independent of N,. The Casimir operator also just becomes 
the number 

qm = a(%, + 4) - 4). 
We note that the preceding expressions are even in al. 

We will now systematically look at the conditions on TI and ?RI which yield 
nullspaces of L-(m) and L+(m), i.e. those states In;), In:) whichsatisfy L-(m)ln;)= 
0, L+(m)ln;)=O. 

First of all, it is obvious that 10) is always a In;) nullspace regardless of the values 
of T, and ?Rp The conditions concerning the existence of other nullspaces may be put 
into three categories described in the following: 

(A) No nullspace states of L,(m). Conditions: T l + % l + j + ~ ,  Tl-a1#j'+& 
where j and j '  are non-negative integers. In this situation there are no nullspace states 
of L+(m), and L ( m )  has only the nullspace state IO). Thus there are no invariant 
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finite subspaces embedded in the infinite-dimensional m-quanta boson space, which 
would provide finite-dimensional realizations  of^ the algebras. (The inhite- 
dimensional realizations in the infinite-dimensional m-quanta basis of states will be 

(B)  Only one nullspace state of L,(m). Conditions: 31=j+p+9il (two possibili- 
ties), where j is a non-negative integer. For.either of these situations there is an m- 
quanta nullspace state l j )  of L+(m), and furthermore the next thigher’.state is a 
nullspace state of L-(m), i.e. 

Thus, there is one (j+l)-dimensional invariant frnire subspace imbedded in the 
infinite-dimensional m-quanta boson space. This yields a ( j +  1)-dimensional irreduc- 
ible finite representation of the algebra(s). For these two possibilities for TI, the 
operator L, becomes 

Thus, for general 9Ll, we see that although a (j+ 1)-dimensional finite represenation 
of the so(3) algebra is produced, this does not provide the global generators of the 
SO(3) group, since global generators only arise if &(m) acting on the basis states 
produce an integer value. (For the generators of SU(2), whose algebra is isomorphic 
to S0(3), ‘half-integer’ values are also allowed.) Consequently, only for ‘half-integer’ 
or integer choices for ?Jll do these finite representations of the algebra correspond to 
the global generators of the relevant groups. 

Moreover, for ,the. algebras, there is also the remaining invariant infinite-~ 
dimensional subspace. Using the notation { } to separate the invariant subspaces of the 
m-quanta realizations, we may depict these subspaces in the following fashion: 

discussed later.) .~ 

L+(m)Ij)=O and L-(m) 1 j +  1) = 0. 

. .  &(m) = (N,  - j -+ r 9L1). 

~~ ~ ~ ~ l o ~ , l l ~ , . . ~ , l ~ ~ ~ , ~ l ~ + l ~ , . ~ . . ~ , ~ l ~ ~ ~ .  
(C) Two nullspacestates ofL*(m). Conditions: Simultaneously Y1 + al~= j+: and 

Y1-R1=j’ +:, wherej and j ’  are non-negative integers. To facilitate the discussion, 
we shall distinguish two subcases: 

(i) Relationship j =  j ’ .  This is a degenerafe case in which the two nullspace states 
of L+(m) actually collapse into a single state. The invariant subspace structure is then 

but in contradistinction to category (B) above, the Casimir ~~ number .~ now has no 

The action of L,(m) on the nullspace states of the ( j+  1)-dimensional irreducible 

{lo), IO,. . . ,lj)},{lj+1), . :-. ,-flm)} 

arbitrary a, dependence but has the value 0, = -114. ~~ 

finite subspace is 

Thus, for 1 =~l, this ( j +  I)-finite-dimensional representation of the so(3) algebra does 
indeed represent the global spinor generators of the-SU(2) group, since L,(m) acting 
on the basis states produces half-integer values. The correspondence with the usual 
basis and eigenvalues for &(m) can be made by relating the eigenvalues n, to shifted 
values k by the relation k=n ,  + (j+ 1)/2, and defining basis states 11)) by the relation 
Inm)=llnm - j/2)). Then, for the finite ( j +  1)-dimensional representation, the shifted 
eigenvalues of L,(m) range from - k/2 to k/2 us 11 )) goes from 11 -j/2)) to Ilj/2)). This 
recovers the Holstein-Primakoff [l] representation form = 1, i.e. when onequantum 
states are used. 

I ~ ~ . . ~ , ( m )  lo) = - ( j +  5) 10)- .. L3W I!) = - (3)li). 
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where Tm(N) i s  any m-periodic function of N .  
To solve the second equation, the nonliner difference equation for f m ( N )  is 

linearized by considering the difference equation for the product fm(N)fm(N-m),  
which leads to a general solution that provides the product difference equation 

X IN - + Tm(N) -%?"I 

G r [ ( G ) - y N + m  + mj,,,)] 
r [ ( W ' ( N +  mpm)l 

where the operator ?Rm(N) is an m-periodic function (possibly different than Tm(N). 
Now, we use the fact [14] that the gamma function ratio 

S m ( N ;  pm) E 

SAN; pm)sm(N- m; pm) = ( N -  m + mpm) 

satisfies the relation 

if p,(N) is any m-periodic function of N .  Thus, a particular solution, f gl(N) of the 
nonlinear difference equation for f m ( N ) ,  is given by 

( - A12)'" Sm(N; 4 - Tm +9tm)Sm(N; 4 - Fm -am) 
f g ' ( N )  = m m-1 

Sm(N; 1 - klm) 
k=O 

To obtain the general solution of the product difference equation, we note that the 
ratio of the general solution f m ( N )  to the particular solutionfc,P)(N), 

r m  ( N )  =fm("(N) 
satisfies the relation 

rm(N)rm(N- 1) = 1. 

e*=" In[r,(N)] =%(N) 
where 9,,,(N) is any m-periodic function of N, i.e. %(N+m) = 9,,,(N). Thus, it follows 
that the general solution for f m ( N )  is 

Thus, it follows that 

f m ( N )  =fi'(N) exp{[cos(Ndm) - i s i n ( N ~ / m ) ] 9 ~ ( N ) }  
where 9m is any m-periodic function of N .  No,te that the solution of the original 
postulated commutation relations involves three arbitrary m-periodic functions: 

The Casimir operator qm, evaluated by considering (n'[  In) matrix elements, turns 
Tm(N), and 9,,,,(N). 

out to have the same form as in section 3, namely 
%,,,=a{ - ++ (%,,,(N))z}. 

Thus, the characterization of these realizations also depends only on one of the m- 
periodic functions that occurs, namely C&@". 

4.1. Special case in which f m ( N )  is independent of N 

Since Sm(N; pm) cannot be independent of N ,  the only possibility for f m ( N )  to be 
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finite subspaces embedded in the infinite-dimensional m-quanta boson space, which 
would provide finite-dimensional realizations of the algebras. (The infinite- 
dimensionAI realizations in the infinite-dimensional m-quanta basis of states will be 
discussed later.) 

(B) Only one nulkpace state of L,(m). Conditions: T,=j+&&Q1 (two possibili- 
ties), where j is a non-negative integer. For either of these situations there is an m- 
quanta nullspace state l j )  of L+(m), and furthermore the next ‘higher’ state is a 
nullspace state of L-(m), i.e. 

Thus, there is one ( j +  1)-dimensional invariant finite subspace imbedded in the 
infinite-dimensional m-quanta boson space. This yields a (j+ 1)-dimensional irrednc- 
ible finite representation of the algebra(s). For these two possibilities for TI, the 
operator L3 becomes 

Thus, for general Til, we see that although a (j+ 1)-dimensional finite represenation 
of the so(3) algebra is produced, this does ‘not provide the global generators of the 
SO(3) group, since global generators only arise if L3(m) acting on the basis states 
produce an integer value. (For the generators of SU(2), whose algebra is isomorphic 
to S0(3), ‘half-integer’ values are also allowed.) Consequently. only for ‘half-integer’ 
or integer choices for Q1 do these finite representations of the algebra correspond to 
the global generators of the relevant groups. 

Moreover, for the algebras, there is also the remaining invariant infinite- 
dimensional subspace. Using the notation { } to separate the invariant subspaces of the 
m-quanta realizations, we may depict these subspaces in the following fashion: 

L+(m) l j )  = 0 and L-(m) 1 j +  1) = 0. 

L3(m) = (N, - j - 3 3  a1). 

{lo),ll), ..., lj)},{lj+l),. . . ,-+Im)). 
(C) Two nulkpace states ofL*(m). Conditions: Simultaneously TI + Q, = j+& and 

TI - = j‘ + +, where j and j ’  are non-negative integers. To facilitate the discussion, 
we shall distinguish two subcases: 

(i) Relationship j= j ‘ .  This is a degenerate case in which the two nullspace states 
of L+(m) actually collapse into a single state. The invariant subspace structure is then 

but in contradistinction to category (B) above, the Casimir number now has no 
arbitrary 

The action of L3(m) on the nullspace states of the ( j +  1)-dimensional irreducible 
finite subspace is 

{lo),ll), . . . ,  l j ) } , { l j + l ) , . . . , -+ lm) }  

dependence but has the value qm= -114. 

1 &(m) lo) = - ( j +  4) lo) Ldm)Ij)= - ( W .  
Thus, ford = 1, this ( j +  1)-finite-dimensional representation of the so(3) algebra does 
indeed represent the global spinor generators of the SU(2)  group, since L3(m) acting 
on the basis states produces half-integer values. The correspondence with the usual 
basis and eigenvalues for L3(m) can be made by relating the eigenvalues n,  to shifted 
values k by the relation k =  n, + ( j +  1)/2, and defining basis states 11 )) by the relation 
In,) = Iln, - j /2)) .  Then, for the finite (j+ 1)-dimensional representation, the shifted 
eigenvalues of L,(m) range from - k / 2  to k/2 as 11 )) goes from 11 - j /2 ) )  to 11 j /2)) .  This 
recovers the Holstein-Primakoff [l] representation form = 1, i.e. when one-quantum 
states are used. 
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(ii) Relationship j ‘ = j + k ,  where k is an integer >I. Note: since now 25,= 
j+j’+l, and 2 ~ 9 1 1 ~ = ~ j - j ’ ~ ,  we may without loss of generality take j ’ > j .  For this 
situation I j )  and I j +  k) are both nullspace states of L+(m), and I j +  1) and l j  + k + l} 
are both nullspace states of L-(m). The invariant subspace structure is then 

{lO),l1), . . . , lj)l,Ilj+l), . . . ,lj+W,{lj+k+1), . . . ,+lm)}. 

and the Casimir number has the value 

We see that there is one invariantflnite subspace of dimension j +  1, and another finite 
subspace of dimension k, both of which are imbedded in the infinite-dimensional m- 
quanta boson space. This yields an irreducible h i t e  representation of the algebra(s) 
of dimensionj+ 1 as well as an irreducible finite representation of dimensionality k. In 
addition, there is the remaining infinite-dimensional representation. 

The action of L,(m) on the nullspace states of the imbedded (ji1)-dimensional 
irreducible finite subspace is 

L,(m) IO)= - [ j+  (k+ 1)/2]10) L3(m) li) = - U+ W-I lj) 
so for A= 1, the ( j+  1)-finite-dimensional irreducible representation of the so(3) 
algebra does indeed give global spinor generators of the SU(2) group, since L3(m) 
acting on the basis states produces halflinteger values. Definition of ‘shifted’ eigenva- 
lues for n, and redefined basis states 11 )), as discussed earlier, can bring the generators 
and basis states into correspondence with the more customary representations. Thus, 
once again, a generalization of the Holstein-Prinmakoff representation is obtained. 

The action of L3(m) on the other nullspace states, that of the imbedded k- 
dimensional irreducible finite subspace, is 

L3(m) lj+ 1) = - [(k- 1)/2] 10) L3(m) lj+ k) = + [(k- 1)/2] I j +  k). 
Thus, for k being an odd integer, this k-dimensional irreducible represenation of the 
so(3) algebra in the subspace gives the globalgenerators of the SO(3) group as well as 
the integer-valued representation of the global generators of SU(2), while for k being 
an even integer the k-dimensional representation of the so(3) algebra in the subspace 
gives the global spinor generators SU(2). Again, generation of ‘shifted‘ n, eigenvalues 
and basis states 11 )) may be made to provide in this imbedded subspace a generahation 
of the Holstein-Primakoff representation. 

3.3. The infinite-dimensional representations of the Lie algebra 
It is known [I31 that for a compact Lie group all irreducible matrix represenations are 
finite-dimensional, and particularly for SO(3) that the generator L, acting on basis 
states for which it only has diagonal matrix elements yields integral values (‘half- 
integral‘ as well as integral for the group SU(2)). Thus, for 1 = 1, the realizations that 
we have constructed which do not meet these criteria cannot be representations of the 
generators associated with this group(s). Thus, one must distinguish between opera- 
tors which satisfy the commutation relations of a gjven Lie algebra but which do not 
represent generators for an associated Lie group, and operators (satisfying the Lie 
algebra) which can represent the generators of an associated Lie group. In the former 
case, while the Lie group for infinitesimal parameters associated with the Lie algebra 
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elements can be integrated to give a local (i.e. non-integrable) representation of an 
associated Lie group in the neighbourhood of the identity, it does not give a global 
representation (which requires L3 to have integral and bounded eigenvalues for 
SO(3)). 

3.4. Special case m =2 

Returning back to the at, a, N description (instead of the bmt, b,, N,,, m-quanta 
description) for L,(m) and L_(m), one can inquire whether it is possible that the 
elements of the algebra(s) are independent of N .  It is readily found by inspecting the 
form of f m ( N )  that this can happen only when m = 2, since only then does ( N + m ) ! / N !  
become a quadratic denominator function in N .  We can make&@) independent ofN 
by choosing a 2 ( N )  = F&V) = - $. Then f i (N)  = ( - d/4)'" and 

L+(2) = (-a/4)"'a'u+ ~ 4 2 )  = ( - a14)"20a L3(2) = :(N+ +), 

4. Realizations invoiving integer powers of at and U: a constrained non-Hermitian 
L,, L- connection 

Infinite-dimensional basis realizations of the so(3) and so(2,l) Lie algebras, contain- 
ing integer power m in the Bose creation and destruction operators a' and a, may also 
be constucted in a straightforward fashion using a different association for L, and L- 
in terms of two functions? f , ( N )  and gm(N). In this section, we identify the 
m-realization of the elements of the Lie algebra(s) by the following scheme: 

L+(m) =fm(N)(at)m L-(4 =fm(N)(a)m Ldm) = g m W  
where m is an integer 
Indeed, 

1. Note: here L_(m)'is not L+(m) for real functions fm(N) ,  

cfm(N) (a)"}+ =fm(N- m) (4". 
Since L+(m) and L ( m )  utilize the same functionsf,(N), we call this a constrained 
non-Hermitian realization. 

Satisfaction of the Lie algebra commutation relations leads to the condition 
. .  

c f m  0') k m  ( N )  - g m  (N-m) - 1) = 0 

The first of these equations leads to a general solution for g, (N) which is exactly of the 
same form as that obtained for gm(N) in section 3, namely 

1 
m g , N  =- (N-mrm(N)) 

t In sections 3 ,4  and 5 the notation L*(m), L3(m).  fm(N) and g,(N) is employed for the relevant operators 
and associated two functions whose solution is sought. However, these are noI the same operatonlfunctions 
in these different sections. From one section to another, these differ in possible assignment of associated m- 
periodic functions, and in the case of fm(N) are distinct in form of solution. The same notation is used in 
these three sections to avoid proliferation of symbols or awkward subscriptlsupencipt tagging such as 
ff['(N), E")(N),  etc. When comparisons are made of different functions in different sections. the 
snpencript tags (using roman numerals to identify the sections) will be made explicit. 
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where T,(N) is any m-periodic function of N .  
To solve the second equation, the nonliner difference equation for f , ( N )  is 

linearized by considering the difference equation for the product fm(N)fm(N-m), 
which leads to a general solution that provides the product difference equation 

x IN-m(++ Tm(W -%(WI 
where the operator %"(N) is an m-periodic function (possibly different than T,(N). 

Now, we use the fact [14] that the gamma function ratio 
G r [ ( 2 m ) - l ( ~ +  m+ mp,)] 

r[('W-'(N+ ~ , ) l  S,(N; pm) = 

S,(N;p,)S,(N-m; P,) =(N-m+mp,) 

satisfies the relation 

ifp,(N) is any m-periodic function of N .  Thus, a particular solution, f $ ) ( N )  of the 
nonlinear difference equation forfm(N), is given by 

(-A/2)"2 S,(N; +- 5, + %,)S,(N; 4- T, - am) 
f $'(N) = m m-1 n S,(N; 1 - k/m) 

k=O 

To obtain the general solution of the product difference equation, we note that the 
ratio of the general solutionf,(N) to the particular solution fc:)(N), 

rm(N) =f,(N)lfP(N) 
satisfies the relation 

rm(N)r,(N- 1) = 1. 

eirvx/m In[r,(N)] = i$,,(N) 

where !%,,,(A') is any m-periodic function of N ,  i.e. %(N+ m) = 9,(N). Thus, it follows 
that the general solution forfm(N) is 

Thus, it follows that 

fm(N) = f$)(N) exp{[cos(Ndm) - i ~in(Nn/m)]%~(N)} 
where 2m is any m-periodic function of N. NoSe that the solution of the original 
postulated commutation relations involves three arbitrary m-periodic functions: 

The Casimir operator %,, evaluated by considering (n'l In) matrix elements, turns 
Tm(N), %@" and %" 

out to have the same form as in section 3, namely 

Thus, the characterization of these realizations also depends only on one of the m- 
periodic functions that occurs, namely %,,,(A'). 

4.1. Special case in which f m ( N )  is independent of N 
Since S,(N, p,) cannot be independent of N ,  the only possibility for f , ( N )  to be 

qe,=n{ - f +  (?Itm(N))Z}. 
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actually independent of N is when m = 2; in that casef$)(N) has two factors of S, in its 
denominator which could cancel the two factors of S, in its numerator. Explicitly, for 
m = 2, fi(N) tums out to be 

where T2, C& and % are arbitrary 2-periodic functions of N .  Now, if one chooses 
g=O, Tz= - f ,  and a*=*. thenX(N) = G ( 2 ) - 3 1 2 ,  which isindeed independent of 
N ,  and gz(N) = ( N + f ) l Z .  Thus, this special case retrieves the familiar commutator 
algebra, bilinear in the Bose operators (the same as for the special case m=2 
discussed in section 3). 

[ (N+  +), utut] = k'a' 
[(N+ f), au] = - 2aa 
[a'u', au] = - 4(N+ 4). 

4.2. Equivalence of infinite-dimensional realizations 
It might be conjectured that for a given m, the constrained m-realization, 

L+(m) =fmW (a'Y" =f" (4" Ldm) =g" 
(found here in section 4) is equivalent to the Hermitian m-realization (found in section 
3). We will now show that these are indeed equivalent if T,N(N) is chosen equal to 
Tf'(N), and '3tLv(N) is chosen equal to afl(N). 

Suppose it were true that, for the same m, the realization in section 4 is equivalent 
to a realization in section 3. Then, there must exist an operator, call it B,, such that 

B,g:(N)B;1 =g;I(N) 
B J z ( N )  (a')"B;' = (a')"f:(N) 

EJ!,!'(N) (a)'"B;'=f:'(N) (a)"'. 
The first of these relationships is obviously satisfied i fB ,  is only a function of N .  Thus, 
we assume that B,=B,,,(N), from which it follows that B;'={E,(N)}-'. The matrix 
eIements of E,(&'), in terms of the eigenvector hasis of N ,  can then be found by 
requiring that the second and third of the above relationships are satisfied. The result 
is 

E,(N)  =VF(N)}-"'. 

[ fF(N)fz(N - m)]"'=f!'(N- 4. 

It may be easily verified that the second and third of the aforementioned relationships 
are satisfied since 

Thus, appropriate choices of the arbitrary m-periodic functions make the realizations 
in section 4 equivalent to those in section 3 for the same m. 

5. Realizations involving integer powers of at and a: arbitrarily assignable fnnction 
for non-Hermitian L,, L- 

Using three functionsfm(N), h(N) and g,(N), whose properties in this section are not 
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necessarily related to those.of previous sections, we identify the m-realization of the 
elements of the Lie algebra by the following scheme: 

L+(m) =(ar)"fm(N) L ( m )  =h,(N)(u)" Lb) g m ( N  

where m is an integer 3 1. Note: here L(m)' is  not L+(m) for real functionsf,(N). 
Moreover, since L+(m) and L-(m) utilize diferent functionsf,(N) and h,(N), we call 
this a non-constrained non-Hermitian realization. 

Satisfaction of the Lie algebra commutation relations leads to the conditions 

k m ( N )  - g, (N  - m) - 1) = 0 

Once again, the first of these equations leads to a general solution for gm(N)  which is 
exactly of the same form as that obtained for gm(N) in section 3, namely 

where Tm(N) is m y  m-periodic function of N .  

by considering the product f , ( N ) h , ( N ) ,  which leads to the general solution 
To solve the second equation, the linear difference equation forf,(N) is simplified 

where the operator 9tm(N) is an m-periodic function. 
One of the two functions fm(N) ,  h(N) may be chosen arbitrarily? and then the 

other of these functions is determined from the above relationship involving the 
arbitrary m-periodic functions Tm(N) and Em(N). Evaluating the Casimir operator 
qm, we once again find it has the form 

%,=A{-++(%,(N))7. 

5.1. Equivalence considerations 
It may be conjectured that, for a given m, the non-constrained m-realization obtained 
here in section 5 is equivalent to the Hermitian m-realization found in section 3) if 
T;(N) is chosen equal to TF(N), and %;(A') is chosen equal to %!!'(N). 

If this is the case, then there must exist an operator 3, such that 

%,g;(N)%;I= gZ[(N)  

93"(U+)"f;(N)%;' = (ut)mf:'(N) 

%R,hm(N) (a)"%;' =fZ'(N) (U)". 

T This freedom of choice, for the realizations linear in the boson creation and destruction operators (i.e. for 
m= 1). was discussed by Klein and Manhalek see [6 ] ,  p 385) in their discussion of the Dyson-Maleev 
mapping. 
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Again, the first of these relationships is obviously satisfied if a,,, is only a function of 
N .  Thus, we assume that CA,,, = ‘Z&(N), from which it follows that $3;’ = {?i$&”}-l. 
The matrix elements of %,,,(A’), in terms of the eigenvector basis of N, can be found by 
requiring that the second and third of the above relationships are satisfied. This gives 
the result that 

This is just a recursive relationship for the matrix elements m apart of the diagonal 
matrix a&). It may be easily verified that the second and third of the afore- 
mentioned relationships are satisfied since 

[f: (Wk”l”* =f;‘(N).  
Thus, with appropriate choices of the arbitrary m-periodic functions the realizations 
here in section 5 are equivalent to those in section 3 for the same m. 

This freedom of choice was made by Klein and Marshalek ([6],  p 385) in obtaining 
the Dyson-Maleev mapping and showing it may be unitarized to become the 
Holstein-Primakoff mapping. Their discussion corresponds to the m = 1 case with all 
m-periodic functions of N taken as zero. 
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